Portail documentaire

Nouvelle recherche Votre compte

Applied Vegetation Science . 27(3)

Mention de date :  2024
Paru le :  13/05/2025

Exemplaires

CoteSectionSupportLocalisationCode-barresDisponibilité
aucun exemplaire

Dépouillements

 Ajouter le résultat dans votre panier
détailArticle: texte imprimé A deep-learning framework for enhancing habitat identification based on species composition / César LEBLANC C. in Applied Vegetation Science, 27(3) (2024)   DOI
  • Ajouter à votre panier
[article] 
inApplied Vegetation Science > 27(3) (2024)
Titre : A deep-learning framework for enhancing habitat identification based on species composition
Type de document : texte imprimé
Auteurs : César LEBLANC C., Auteur
Année de publication : 2025
Langues : Anglais (eng)
Résumé : Aims

The accurate classification of habitats is essential for effective biodiversity conservation. The goal of this study was to harness the potential of deep learning to advance habitat identification in Europe. We aimed to develop and evaluate models capable of assigning vegetation-plot records to the habitats of the European Nature Information System (EUNIS), a widely used reference framework for European habitat types.
Location

The framework was designed for use in Europe and adjacent areas (e.g., Anatolia, Caucasus).

Methods

We leveraged deep-learning techniques, such as transformers (i.e., models with attention components able to learn contextual relations between categorical and numerical features) that we trained using spatial k-fold cross-validation (CV) on vegetation plots sourced from the European Vegetation Archive (EVA), to show that they have great potential for classifying vegetation-plot records. We tested different network architectures, feature encodings, hyperparameter tuning and noise addition strategies to identify the optimal model. We used an independent test set from the National Plant Monitoring Scheme (NPMS) to evaluate its performance and compare its results against the traditional expert systems.

Results

Exploration of the use of deep learning applied to species composition and plot-location criteria for habitat classification led to the development of a framework containing a wide range of models. Our selected algorithm, applied to European habitat types, significantly improved habitat classification accuracy, achieving a more than twofold improvement compared to the previous state-of-the-art (SOTA) method on an external data set, clearly outperforming expert systems. The framework is shared and maintained through a GitHub repository.

Conclusions

Our results demonstrate the potential benefits of the adoption of deep learning for improving the accuracy of vegetation classification. They highlight the importance of incorporating advanced technologies into habitat monitoring. These algorithms have shown to be better suited for habitat type prediction than expert systems. They push the accuracy score on a database containing hundreds of thousands of standardized presence/absence European surveys to 88.74%, as assessed by expert judgment. Finally, our results showcase that species dominance is a strong marker of ecosystems and that the exact cover abundance of the flora is not required to train neural networks with predictive performances. The framework we developed can be used by researchers and practitioners to accurately classify habitats.
Saisie BD Flore : Rien à saisir
En ligne : https://doi.org/10.1111/avsc.12802
Format de la ressource électronique : DOI
Permalink : https://portail-documentaire.cbnmc.fr/index.php?lvl=notice_display&id=31490
[article] 

Exemplaires

CoteSectionSupportLocalisationCode-barresDisponibilité
aucun exemplaire
rss Informations sur le centre de documentation du Conservatoire botanique du Massif central     pmb

Conservatoire botanique national du Massif central

Le Centre de documentation accueille du public sur rendez-vous.
La prise de rendez-vous est obligatoire au 04 71 77 65 68
Horaires : 9h-12h 14h-16h30
Fermeture le mercredi
  • A-
  • A
  • A+

Accueil

Accueil

Sélection de la langue

Se connecter



Mot de passe oublié ?
Pas encore inscrit ?

Adresse

Conservatoire botanique national du Massif central
3 rue Adrienne de Noailles
43230 Chavaniac-Lafayette
France 
04.71.77.55.68
contact
Accès au site principal